Математики доказали, что произвольная замкнутая фигура на плоскости может быть сколь угодно близко приближена множеством Жюлиа для подходящего многочлена. Среди прочего, в качестве демонстрации собственной техники, ученым удалось построить достаточно хорошее приближение силуэта кота. Статья пока не принята к публикации, однако ее препринт доступен на сайте arXiv.org.
Множество Жюлиа относится к фрактальной геометрии и определяется следующим образом. Многочлен от одного комплексного переменного можно рассматривать как отображение комплексной плоскости в себя. Множество Жюлиа - это множество таких точек комплексной плоскости, что при многократном применении такого отображения, они не покидают некоторой заведомо установленной области.
Говорят еще, что такие точки имеют ограниченные орбиты. Обычно множество Жюлиа строят для квадратичных многочленов - такие множества связаны, например, с множеством Мандельброта .
В рамках новой работы ученые интересовались вопросом: насколько сложно может быть устроена граница множества Жюлиа? В результате им удалось доказать следующую теорему: для произвольной замкнутой (то есть начало совпадает с концом) жордановой (то есть непрерывной, которую можно параметризовать отрезком) кривой без самопересечений и сколь угодно тонкой полосы вокруг этой кривой можно найти такое множество Жюлиа, что его граница целиком лежит в этой полосе.
Более того, ученые предложили метод явного нахождения нужного многочлена. В качестве демонстрации они, например, построили многочлен, для которого множество Жюлиа напоминает кошку. Степень полученного многочлена - 301. По словам ученых, их пример наглядно демонстрирует, что динамика полиномиальных (то есть задаваемых многочленами) динамических систем может быть устроена максимально разнообразно. Они говорят, что предложенный ими пример будет полезен в теории таких систем.
Также ученые рассмотрели рациональные функции - то есть отношение двух многочленов. Используя такие функции как отображение комплексной плоскости в себя, они смогли доказать, что аналогичные рациональные множества Жюлиа сколь угодно близко приближают произвольную пару жордановых кривых, одна из которых лежит внутри другой. Исследователи подчеркивают, что вопрос, связанный с большим количество кривых, пока не решен.